
Ronald blak Joan Walton
LkiX;ersity Affiliated Research Center (U.?IRC)

Unilxersity of California at Santa Cruz
NASA Ames Research Center

NXSA , b e s Research Center
Mail Stop 269-3

Moffett Field, C,4 94035
klail Stop 269-3 650-604-2005

650-603-0727
rmak~~mail.arc.nasa.gov

l!effett Fie!d. CA 94035 J ; r l \ ~ n l t o n i ~ m . a ~ ! . a ? ~ . n ~ s a . g ~ ~ - '

Leslie Keeiy D e m s Eeher Louise Chan
NASA Ames Research Center SAIC SAIC

AMail Stop 169-3

650-604-0570 Moffett Field. CA 91035 Vloffett Field. C.4 94035

lchanigmail arc nasa.gov

NASA , h i e s Research Center X.4S-4 Ames Research Center
hloffett Field, CA 94025 2lail Stop 369-3 L k i l Stop 769-3

leslie@'ptolemy.arc nasa go\ 6 5 0 - 6 0 4 4 14 650-604-3377
heher @prolemy arc nasa.gov

-4 fun-acr-The Collaborative Information Portal (C P) was
enterprise software developed jointly by the NXS?I Ames
Research Center and the Jet Propulsion Laboratory (JPL) for
NASA's hghly successful Mars Exploration Rover (IfER)
rnission. Both 3IER and CIP ha\e performed far beJond
their onginal expectations.' '
Mission managers and engineers ran CIP inside the mission
control room at JPL, and The scientists ran in their
laboratories, homes, and offices. -411 the users connected
securely over the Internet. Since the mission ran on Mars
time, CIP displayed the current time in various Mars and
Earth time zones, and it presented staffing and event
schedules with Martian time scales. Users could send and
recei\;e broadcast messages, and they could view and

- dounload data and image files generated by the rovers'
instruments.

CIP had a three-tiered, service-oriented architecture (SOA)
based on industry standards, including J7EE and \\?eb
senices. and it integrated commercial off-the-shelf
sofhvare. ?, user's interactions with the graphical interface
of the CIP client application generated web services requests
to the CIP middlexvare. The middlexvare accessed the back-
end data repositories if necessary and returned results for
these requests. The client application could make multiple
sen-ice requests for a single user action and then present a
composition of the results. This happened transparently. and
many users did not el'en realize that they were connecting to
3 sener'. CIP performed ne11 and \vas extremsl>- reliable: it

attained better than 99"; uptime during the course of the
mission.

In this paper. v.e present overvie\%'s of the MER mssion and
of CIP %'e she\\ how CIP helped TO fulfill some of the
mission needs and hon people used it. Vv-2 discuss the
criteria for choosing its architecture, and we descnbe how
the developers made the software so reliable CIP's
reliability did nct come about b; chance, but -2s the result
of seieral key desi-a decisions \%'e conclude mith some of
the lmportant lessons \le learned from deleloping,
deployng, and supporting the sofnare

TABLE OF COSTESTS

1. MIssros O\-ER\IE\V .. 1
2 . THE COLLABOR4TI\E hFOR%fATION PORT.-\L 3
3. A SERVICE-GRIESTED .iRCHITECTURE 5
4. RELIABILITY .. 11
5. LESSONS L E A R ~ ~ D .. I1
6. COSCL~SION .. 12
A4CliKO\\LEDGEJlESTS ... 13
FSFERESCES ... 13
BIOGR-IPHIES .. 13

The t\\.o ro\-ers of the ;Clan Exploration Rover (.MER)
mission. Spirit and Opportunity, arrived at hfars in January
3004 after seven-month journeys from Eanh. X-4lS.4
scicntisrs designed these tnin robotic geologists to search
for esidence of liquid water in the past on the Martian
surface. The rovers landed on opposite sides of the planet:

.
1

Figure 1 - Llars Evploration Roxer
(Photo courtesyot’N4SA :lnd JPL.)

Spirit inside Gusev Crater on January 3, and Opportunity on
Meridiani Planum on January 14. Mission control was at
NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, CA.

Each rover carried an impressive array of cameras and
scientific instruments. See Figure 1 . The cameras inciuded a
panoramic camera (pancam), a navigation camera (navcam),
and front and rear hazard-avoidance cameras (hazcams).

The scientific instruments deployed on a movable arm
included the hiiniamre Thermal Emission Spectromerer
(mini-TES) that identified minerals. the Mossbauer
Spectrometer that identified iron-bearing minerals. the
Aipha Particle X-Ray Spectromerer (APXS) thar determined

looked at fine-scale features, and the Rock Abrasion Tool
(RAT) that ground away the outer s,urfaces of rocks to
expose their interiors for examination. [1]

the compositiori of rocks. die Micioscopic Imager that

NASA designed the rovers for nominal 90-sol missions. A
“sol” is a Martian day, which is nearly 40 minutes longer
than an Earth day. Other than a few software and mechanical
problems that the engineers were able to overcome: the
rovers performed better and far longer than initial
expectations and entered into extended missions. By early
September 3004, each roI‘er had operated over 200 sols and
had explored more territory than originally planned.

The scicnce generated by the rcwers wzs even xc re
impressive than their longevity. NASA’s international Deep
Space Network (DSK) antennas received the data and
images sent by the rovers, which JPL then processed and
stored in its data servers. After analyzing these data and
images, NASA scientists concluded that liquid water did
indeed exist Or1 the surface of Mais in the dis1aiii past. [Z , 3 ,
4, j l

Broadcast
messages

Clocks

Tool tabs
for time

conversion
and file

navigation

Event
horizon

Schedule
viewer

I

,

I

By Unix directories By data products

Figure 3 - Multiple Ways to Navisa~e the Data and Image Files

However. the MER mission was more than just the rovers. .ifissioi7 Illuimpemei7t -
Tu o Earth-bound teams of VAS 4 scientists. engineers. and
mission managers, one team per roier. uorked around the
Xfars clock to direct the ro\ ers and anal) ze their results

To coordinate all these actii lties on the ground. time
management. data management, and personnel management

ere important

Tash;rl'or Each Sol

Simply stated in order. each rover team's tasks for each sol
were:

(1) Receive a do\inImk of data and images from the ro\ er
(2) Process and analyze these results
(3) Plan the next sol's actn ities
(3) Construct the roi er command sequence
(3 Send an uplink of the command sequence to the ro\ er.

Ti:::c rnc::cgz:nm-- r?urine the initiz! ncmina! 90-sc!
mission and pamvay into the extended missions. mission
personnel Lvorked on Mars time. Therefore, meetings and
orher mission events scheduled on Mars time wouid drift
nearly 10 minutes later re1atk.e to each Earth day. There
were hi'o Mars time zones, one per rover, and there were
sei,eral imponant Esrth time zones.

Knoaing "\\'hat time is it no\\'_'" and *.\then is my next
meeting')" Mas cntical for man! members of the r o \ w

teams

Datu inunn~en7cizt--Durin=o each sol. there was a hmdoff of
data and images betxeen the engineers of a rover team and
its scientists. The engineers commanded the rover and then
received and processed tine results. Tne scientists analyzed
the results and worked nith the engineers to plan the next
sol's activities for the rover. They had to correlate what they
had planned for the rover and what actually happened.

JPL kept the processed data and images in data servers
managed as a Unix file system. This repository contained
both structured and unstructured heterogeneous data, and the
scientists used specialized and general analysis tools. Some
of the data had security restrictions that prevented access by
foreign nationals.

Per-sonizel i?iuizagctncizt-The mission personnel on the hvo
rover teams worked under various roles. Different roles had
dirkrent infomiation needs, which nianagenient needed to
communicate. Some individuals varied their roles during
different times of a sol, and others moved from rover team
to another, perhaps assuming different roles for each rover.

Staff management was complex during the niission. Not only
did each person need to -know \\hat he or she was supposed
to be doing, but also with whom It was necessary to know
who else was working, where. and uhen

The NASA Aines Research Center and JPL Jointly
developed the Collaborative Information Portal (CIP) for the
MER mission. Its crosscutting features and functionality
served the mission managers and the mission scientists and

Duration

engineers. Many found it to be useful during each sol
throughout the mission. IT assisted the r w w t e a m with their
daily tasks. and it helped provide time, data. schedules, and
messages.

The Ciient .4j?pitcnii'oi?

Figure 2 is a screen shot of the CIP client application, u-hich
ran mder Microsoft Windows, PYlacOS X. Sun Solaris, and
the Linux operating systems on PCs, laptops, workstations,
and 50-inch touch-screen displays. The client application
consolidated several usefd tools into a single consistent and . . . __&. L . - .
I l l i u i L i v Z iijei i i ~ t e r f ~ ~ e .

Scl7ed~cle V ~ ~ I ~ L ~ ~ ~ - - C I P assisted with time and personnel
management by displaying staff and event schedules. People
could use the Schedule Viewer Tool to see when events
occurred, who was working when and where, and what roles
they needed to f i l l that day. The schedules helped them
adjust to Mars time, since regularly scheduled events drifted
later from day to day relative to Earth time.

Eveni Horjzo/?-Users could place scheduled events into the
Event Horizon Tool. This tool then displayed a running
countdown of the time left until the start of the event. The
displayed events chansed color to indicate nearness of the
start times.

nlrfa -.. ~\,~a~ig~zfic~?i- -C!P's Data Navigator Tools assisted with
data management. N A S A scientists and engineers could use
the tools to access and display the data and images files
residing in the JPL data servers. CIP transported this
information securely over the Internet through the JPL
mission firewalls.

CIP users had hvo ways to navigate the data and image files.

. . . .- .-.- -

. __ - __. _. - _ .

7 3 0 9 8 2 1 P146124378EFF3543P7419L2Ml JPG

200 0623-04 09 35 25]peg 77596 1 P145937594ESF3505P2557L3Ml JPG
202 0 8 2 3 - 0 4 ~ .- 09 35 31 ._ rpeg - .._. _ _ - __ . - -

Figure 5 - New File?

Icons

Files

4

client I midel

Figure 6 - X Three-Tiered Enterprise System with a Service-Onented L4rchitecture

The! could go directly to the files im hierarchical Cniv
directones. Or. they could browse the files as “data
products”. which \\ere organized hierarchically by ihe rol’er.
sol, and insnxmeni or camera that Zenerated the onginal raw
data. See Flure 3.

CIP‘s data repository tier generated metadata for the
doi%nloaded data and images stored in the mission data
seners. Based on this metadata. the Data Navigator tools
automatically classified and organize rhe data and images
into the data product hierarchy. The tools used this
ciassification to determine n-hich vienw to use to display a
file. See Figure 3 . Users could also search for files based on
the metadata fields.

CIocks-During the mission, it was not ahrays sufficient to
say something !&e, “It xi11 happen at l4:30.“ Was that Mars
time or Earth time. and in which time zone? The Clock Tool
displayed clocks ihat showed Liars and Earth times in
multiple time zones chosen by the user.

T7177e Coin axori-The Time Con\ erter Tool enabled users
to comert times benseen \arious Earth and L13rs time
Tones

B ~ ~ ~ C G S T ii i iz~zciics?i~t~i~t~~-The Broadcast Announcements
Tool enabled mission personnel to wnd messages to ather
C‘IP uscrs Tjgical messages nere nrn data product
announcements LTWJS could brou se archil ed meqsagw

.\kit. Files-Users n-ho \vere interested in specific data
products could use the New Files Tool to register their
interest in those products. See Figure 5. Each user could set
rhe duration, and various icons represented his or her
interests. The file dormat ion list displayed the Froducts
that became available duriig the selected du--’: I auon.
\f.henever a new product became available in the mission
data servers. the product’s file information automatically
appeared in the list.

3. A SERVICE-ORIENTED ARCHITECTURE

CIP was a thee-tiered enterprise s>rsrem. CIP users ran
copies of the client application that used the Interne: to
access shared data. On the s e n e r side. softim-e known as
“middleware” handled simultaneous data requests from the
client applications, and it securely accrssed the “backend“
data repositories. which included the mission data servers
and :he CIP Oracle databases containing metadzIa.
schedules. and the message archive. [6] See Figure 6 .

Gi\,en the mission requirements and the nature of the CIP
client application. designed CX? to have a senice-
oriented architecture (SO-4). SOA consists of a loose!)
coupled collection of senices. where each sen+e is a ndl-
defined, self-contained function that is independent of orher
senices. The senices communicate n.ith each other and
a i th the client applications through a set of protocols knoxn
as web senices. [7]

~ .. .- _ - ~ -_ .

I
CIP CLIENT

Figure 7 - The Component-Based Client Application Architecture with Web Services

1t’h-y Sod

Users ran copies of the CIP client application to obtain
information such as times and schedules and to access data
and images. The client application satisfied the user by
making requests to the CIP middleware for service, such as
“Tell me what time it is on Mars in Spirit’s time zone” or
“Eoivnioad the image file with this file path.”

Web .renice.~-Using web services for communication
between the client applications and the middleuxe offered
several key advantages.

Web services conimunicate using a textual XML--based
industry-standard protocol known as SOAP’. Service
requests and responses are actually small XML documents
passed behveen the client and server. CIP transmitted these
documents securely using HTTPS.

Web services do not require persistent connections. A client
connects to the middleware server, makes a request, receives
the response, and disconnects. The CIP middleware kept
track of an individual user’s requests during a session with
an access token. A client application received a unique token
from the middleaiare whenever a user logged in, and the
client passed this token back to the middleware as part of
zach subscqucnt request.

Web services are language independent, and the web
services standard defines a finite set of XML-based data
types. [SI Therefore, any programming language that has
library routines to communicate via SOAP and to convert
between native data types and the XML data types can use
web services. We wrote the CIP client application in Java,
and during the mission. the CIP middleume (also witten in
Java) responded to requests from the ClP client application

~ ~~

’ SOAP onginallv stood for Simple Object Access Protocol. Now the
acronym supposedly doesn‘t stand for anything. although some claim I t
ought to stand for Senice-Oriented Architecture Protocol.

6

and from Java and C++ applications developed by other
projects.

hidzntiy standards-The web services standard ~ 2 s but one
example of our following industry standards to develop CIP.
We had limited time and resources4, and not the luxury to
re-invent the wheel. Following industry standards allowed
LIS to use commercial off-the-shelf (COTS) sofhvare
wherever possible.

The Clicxt Tici-

We designed the CIP application to be a .‘thick client”
desktop application, as opposed to a “thin client” application
that ran within a web browser. A thick client makes better
use of the user’s local computer and provides better
interacti\ity and responsiveness. We implemented the client
application using the widely avaitable Java platform and
graphical user interface components from its Java
Foundation Classes (“Swing”).

Figure 7 shoivs our component-based approach for the
client tier. Each client tool was a CIP Component object,
and a Service Manager object supported one or more CIP
Component objects. Each Service Manager object managed
the connections to a particular remote middleware service by
using a Wzb Services Client Stub. For example, th2 clock
components used the Time Service Manager object, which
managed the connections to the middleware’s time service.
The Web Services Client Stubs did the conversions between
the clients’ nati\’e data types and the XML data types.

Since it used web services, the client application connected
to the middleware whenever 3 user action triggered a service

For example, rhe ii~jtial version of the middleware had to be ready in four
months to be available for an Operational Readiness Test at JPL. Three
sofnvare engineers completed the middleware in a year and a half. There
were twelve CIP developers oyerall. and thr entire project lasred about
three years.

.. ~

Figure 8 - Web Services and Senwe Provider Beans in the l.liddleware

request. and then promptly disconnected as soon as it got the
response. The client automatically polled the iiiiddle:~~it
periodically via sen-ice requests for the current time and for
any new broadcast messages.

Tlic Mdd1at.al-e Tier

The CIP middleMwe communicated using web s e n k e s \k i th

all the actively running copies of the CIP client application.
It consisted of a Java-based commercial off-the-shelf
applicatior: sen-e: a22 the 527.~1 csrn~nn~nrs that n c
developed. \$:e based our components on the Java 2
Enterprise Edition (J2EE) industry standard. [PI These
components ("beans") lvere Enterprise JavaBeans iEJB) that
operated at mn time under the control of the \Yeblogic
application server from BEA Systems. Inc. [I O]

.iliddZmr c7i-e Senvces-The sen ices provided by the CIP

middlelvare to the client applications were:

5 Ltyer management seii*ice to process user lo,oins and
logouts and to maintain user sessions.

c, Time sen>ice to provide Mars and Earth times in various
time zones.

o -Meetadata que??; sen3ice to fetch metadata from the CTP
database.

o SchcduLe que??' sen2ice to fetch schedules fiom the CIP
database.

o File str-eamer s e n k e to donnload and upload files.
c, Message sen:ice for asynchronous notifications, to

broadcast and receive messages, and to fetch archived
messages from the CIP database.

The middleware also pro\,ided basic security and a number
of "ilities". including:'

Also h o u ~ as 3flo:herhood and Apple Pie.
-

3 Adaptability
0 liamtainabilir>

Figure 10 - The Middleware IJtility

o Accessibility
o Scalability
o Extensibility
o Reliability
o Adjustability

CTP security \!/as a combination of user management and
data encrj.ption. T h e CIP middien.are required each user 10
log in wiih a user nane 2nd password. Each user had pre-
assigned privileges that allo\ved or disallowed access to
certain data or images. Digital certificates from Verisign,
Inc. enabled the CIP middleware to encrypt all data traffic
between it and the client applications. [113

A stateless session EJB represented each middleware
service. Each such Service Provider bean had public
methods and a SOAP Processor to enable the client
applications to request services by invoking the methods
remotely via web services. The SOQ9 Processor did the
conversions between the Java data types and the XML data
types. See Figure 8 .

The application server maintained an instance pool of the
stateless session beans, and it created or destroyed these
instances in response to the request load. This made ClP
scalable: as more requests arrived from the users, the
application server automatically replicated more Service
Providers to handle them.

Several of the middleware services created data beans,
which were stateful session EJBs. These beans maintained
state infomiation, and the application server cached them in
memory. For example, the metadata and schedule query
services created data beans that used Java Database
Connectivity (JDBC) calls to query the CIP databases. [121
Each data object kept a reference to the returned query
results. This memory cache of data beans greatly improved
the perforniance of repeated query service requests for the
same data. If the data beans were already in the cache, the
service did not need to make the much more time-
consuming database queries. See Figure 9.

Web services made CIP very extensible. The "plug and

2004-04-01 12:09:32,225 INFO : jdoe: Metadata.query0
2004-04-01 12:09:32,230 DEBUG: SELECT file-view.* FROM MER-8.file-view WHERE
((file-view.modified >= 1080806949117) AND (file-view.category = 'dataFile') A I D

2004-04-01 12:09:33,126 DEBUG: Records fetched: 0, skipped: 0
2004-04-01 13:50:06,816 INFO : njane: Metadata.query0
2004-04-01 13:5!3:06,820 DEBUG: SELECT file-view.* FROM MEX-B.file-view bWE?.E
((file-viau.seqnuin = 66) AND (file-view.category = 'dataProduct')
(file-view.owner = 'opgs') AND (file-view.type LIKE '%/jpeg/MER-B' ESCAPE ' \ '))
2004-04-01 13:50:10,073 DEBUG: Records fetched: 1, skipped: 0
2004-04-01 13:50:11,546 INFO : jdoe: Metadata.getObjectsByParent0
2004-04-01 13:50:11,550 DEBUG: SELECT * FROM MER-B.file-view WHERE (parentsk =
16117) P-ND (cazegory = 'datzFile')
2004-04-01 13:50:12,105 DEBUG: Recores fetched: 5, skipped: 0

(file-."-iSw. f<l ,=zgle L I K E 1 / ~ / ~ l e r b / o p s i o p s i s u r f a ~ ~ ~ ~ ~ i ~ - ~ ~ ~ , ~ ~ I ESCA&F?E, I ', I j

Figure 11 - Sample Middleware Log Entries

S

__ . . - _ _ _ - - ,

-A ne* panc31-n image fi le has just'
h e n dobvnlcedad from Mars:"

Figure 12 - Ne\\ File Notification and Broadcast Messages

piay" services were easy TO add, remove. or repiace in rhe
middlewme: the application sen er handled these operations
"hot" - e . lbhile continuing to run.

.lfool7iforirig and lo;;oiolig-UTe built a number of sensors into
the middlexs-are. Lye then developed 3 Middleware Utility
program to monitor the middleware's status constantly, and
to report graphically such statistics as memory usage and
response times. Knouing the health of server at all times
enabled the system operators to correct problems before
they became serious. See Figure i 0.

The middleuwe logged exeq acti\ity, such as a user
request For each user request. the log entry contained a
timestamp, the user's name, the name of the called method.
details of the request. and key information about the results
See Figure 11. We did data mining m these logs to compute
1 anous statistics. such as hoM frequently users accessed
certain Qpes of schedules, or to deduce usage patterns. such
as \\hat methods users emploqed to locate data products
This enabled us to fine-tune the middleaare's operations

3 .\bfrficurrori messages that informed the CIP middlen are
or CIP users that nen data and image files are available.

a B i - o a d c ~ ~ t 777e.~su,oes that CIP users could send to all the
other users.

-
1 o implement as) nchonous messaging. the CIP n i idd le~ are
used the Jala LIessage SenIce (JYIS). \ i hch \\as a part of
the application server [131

9

T 1 I n
.iivis uses a pubiish-subscribe model. The 1iiiJdiewaic liad a
number of topics that represented different types of
messages. A message consumer (such as a CIP client
application) subscribed to one or more topics. Then
whenever a message producer (a CIP client application or
another CIP component) published (sent) a message to that
topic, JMS delivered the message to all the message
consumers ivho had subscribed in that topic. CLP messaging
was asknchronous: message queuing and delivery occurred
in parallel with all other operations. As mentioned earlier,
each cii eni appii c ati on automat i call:G po l k d the mi ddl eware
periodically for its messages.

Figure 13 shows how the File Monitor in the data repository
tier notified users who aere interested in the availability of
new panoramic camera images. As soon as the File Monitor
detected a new panoramic camera image. it published a
message to the Pancam Topic.

CIP applications received their messages l-ia u.sb semices.
The middlev.are maintained a JhlS Consumer object for
each user to recei1.e messages. A Message Converter
reformatted each message so that the rniddlels-are can later
return it as a web sen-ices response. R-hsnever a user's
client application polled the middlemxe for messages via a
s en ice request, the User Prosy bean (a stateid session Em;)
checked the user's JMS Consumer object. and it retrieved
any deli\,ered messages to return in response.

Figure 17 also shows hon. the Broadcast h,fessages topic, to
which all CIP client applications subscribed. enabled a user
to send messages to all the other users. ii'hene\.er 3 user sent
a broadcast message via a service request, the Publisher

..
\

slogd . monitor _I

-/

? I

-i File
Monitor

- *-- - L A \---

File I/

/’

Detector ,

Figure 13 - The Data Repository Tier

bean (a stateless session EJB) published the message to the
topic. The Message .4rchivist, a message-driven EJE3 that
also subscribed to the topic, received and archived all
broadcast messages into the Message Archive database.
Each user received broadcast messages via polling.

If a user wanted to browse the archived messages, the client
application made a service request, and the Delezate bean (a
stateless session EJB) made the .IDBC Query into the
Message Archive, The middleware returned 311 the archived
messages in response.

TI’W Datn Rcposilot;~ Tier

As shown earlier in Figure 6, the data repository tier
encompassed the CIP databases and the mission data

Database Front End w
Characteruation Agent ,

aornaiun
attributes attributes

Doman Map
Configuration

File
Database

Figure 14 - Metadata Generation

servers

The File Monitor constantly watched the logs generated by
the Unix utility program nfslogd, which \\Tote a log entry
every time it detected a file creation, read, move, or update.
[I41 See Figure 13. The utility used a configuration file that
contained regular expressions representing the file paths that
were relevant to CIP. It filtered out any files whose paths did
not match any of the expressions.

Unlike the File Monitor, the File Detector used the CJnix
utility program jfil7tl to “walk“ the directory tree of the
mission file system and find any relevant nebvly created or
updated files. [15] It also used a configuration file that
contained regular expressions for file paths. The File
Detector walked the directories once during each run. It w3s
a backup for the File Monitor whenever nfilogcl was not
running.

As soon as the File Monitor or the File Detector encountered
a newly created or updated file that was relevant, it sent a
message to the appropriate JMS topic, as was shown in
Figure 12. Data Loader subscribed to the topic.

Upon receiving a message, the Data Loader generated
metadata for the file. Using regular expressions from its
configuration file. the loader derived nietadata field values
from the file path itself. The loader also obtained some
information from the Unix file system, and for some types of
files, it read the file header to get more metadata field
values. See Figure 14. Example metadata fields included the
file name, the creation date and time, to which rover the file
belonged, the rover location, which rover instrument
generated the file data. during which sol. etc. The loader
inserted. deleted. or updated the metadata in the database.

Data Modeling-The early phase of hi, oh-level architectural
design includes defining how a system will provide its

10

ser\.ices. T k s in\ olves data niodelir process modeling,

components that the developsrs can build efficiently. The
specifics of This partitioning are dependent on each system.

Il?TPI-f?fP &Si& 2-2 p2rtiticcicn fhP s;'s?en? iRtC

An important responsibility of the data repository tier \vas to
maintain the data model that it shared with :he client and
middleuwe tiers. The CIP data model consisted of a logical
model (ha \ . applications viewed the data) and a physical
model (how the data was stored). The client applications
n.orked with only the logical model. The middleware

order to convert each client request into the proper SQL
statements and to return the results in a form suitable for the
client.

;;oiked --&L \ . I U 1 hn*h " U L l l ?ha L L l L !oeica! - ~ q z pf.,:qsica] data mod~!s L:

CIP was extremely reliable. During the first seven months of
the rovers' nominal and extended missions, its middleware
stayed up m e r 99.99.6 of the time, and it ran nonstop for as
long as 77 days at a time. [16] Several key factors
contributed to this reliability.

We followed industry standards, and we used COTS
softmare. For our production middleware server, we ran the
U'ebLogic appiication sen-er from BEA Systems on the
Solaris operating system from Sun Microsystems [17]. In the
data acquisition tier, we used the Oracle Enterprise Server
9i.

The application server further contributed to reliability by
constantly monitoring the behavior of the Ems, and it did
au;omatic retries oi errar recoi.eT xvhenever necessary.

On our de\.eiopment servers. \\-e did estensil-e mess testing
of the middleware before n-e deployed CIP and even during
the mission. CIP usage patterns had sharp spikes. as many
users became very actii-e shortly after the rovers
donnloadsd new data and images. Our stress testing showed
US how the middleware would behave during such spikes
and pointed out performance bottlenecks. We \\.ere able to
adjust the system parameters accordingly to enable the
middleware to handle heavy loads better. We de\-eloped 3

standalone. interactive utiiity to perform the stress testing by
simulating any number of users performing various client
functions, such as accessing schedules or donnlnading files.
See Figure 15.

An important measurement of s o f h x e reliability is ho\i
!011g it stays up and running. An application c3n
unexpectedl\~ crash. or sysreni administrators can bnng I:

d o n n for maintenance. .4 conxnon maintenance optration
for CIP \\'as to reconfiprt a sen ice to accommodate 3

change in an operaiional parameter, such as the time it Took

for a s i p 4 to travel from E m h to Pvfars !one-i.xa> light
rime' /.

Therefore. dynamic reconfiguration \vas a key feature that
allowed CIP to stay up and running for long periods Lvithout
scheduled sewer maintenance donntimes. CIP's middlea-are
design and the application server allowed indiyidual ser;ices
to be "hot redeployable": we could add, remove. replace, or
restart a sen-ice while the rest of the middlen-are (and CIP as
a whole) continued to run. To reconfigure a service, a
system administrator first edited the senice's confiuration

!\%en the service
restafled: it read in its new configuration. Redeploying a
service typically took only a few seconds. and often users
did not notice any interruptions.

5 ! P 22d then redeployed the seF:iCP.

5. LESSOSS LEARNED

\Vie learned several important lessons during the design.
deyelopment. and deployment of CIP. [161

By follo\ving industry standards and using pro\.en COTS
sofiware for the infrastructure (operating system, application

that the underlying "plumbing" nil1 w-ork. Then the real
challenges of enterprise development are not in the coding,
but in rhe inre,omrioii of the various components.

sent, ax! dztabase server), ycL! c-22 be remn2h!y 2ssEred

Make judtcious use of vendor-supplied technical support
Uhenexrer there were problems that R e couldn't easil!
resoli e ourselves. especially during the man> crunch times.
It was often useful to call for support and. in effect, add
temporary but knov, ledgeable members to our de\ elopment
team Ne\erthe!ess, :t a a s mportkint to test and elaluate

Fioure 15 - The Middlen.are Stress Tester

1 1

their a d l k e and sugges:ions before applying them.

Shared coding prxtices. source control, and syqtem
configuration management are critical for succeqsful
development &lake sure there is strong buy-in from ali the
developers from day one

Ever-changing requirements before deployment and ever-
changing operational parameters after deployment nuke it
crucial to develop services that are plug-and-play, mutually
independent. and dynamically reconfigurable.

Do lots and lots of zcier testing. Before the actual rovers
landed on Mars, JPL ran a series of Operational Re a d . mess
Tests where teams of mission managers, engineers. and
scientists worked together with simulated rovers. They
tested software systems such as CIP under realistic
conditions. We found and fixed many bugs during these tests
and gained invaluable user feedback.

Do lots and lots of stress testing. If you don't know what the
limits of your system are. your users will surely find out -
at the worst possible times.

Having a good data modeling process is essential. While
creating the data model, be sure to inciude aii consumers
and producers, ie., the stakeholders, to ensure reaching a
consensus and meeting all usage requirements. Application
developers often lack a deep understanding of data modeling
and view databascs as a simple lookup tables, thus missing
opportunities to leverage fully the database capabilities.

At the beginning of the development of the CIP middleware,
the data usage requirements were not yet fimi, and the
middlelvare didn't use the logical data model properly. The
result was that we decided to cache data using stateful
session Ems instead of using entity EJBs. [Is]. We
subsequently spent much time dealing with threading and
concurrency issues that entity beans would have taken care
of automatically.6

Real-time server monitoring and logging helped the system
operators keep track of what's going on and head off any
potential problems. The Middleware Utility program and the
Pcrformance Monitoring tab of WebLugic's web browser-
based console progain together gave the operators a quick
\vay to assure themselves that all \vas well.' The middleaxe
lo,os provided ways to analyze usaze patterns and fine-tune
U P ' S middleware.

Later on, we sot better data usage requirements and understood the data
model better. But by then. we decided w e didn't have time to convert our
code to use entity beans. In hindsight. we should have taken the hit to our
development schedule and con\ e n d
' Once CIP became operational shonly before the rovcrs landed on Mars,
the system operators mostly were the CIP developers in a new role. M'e
monitored ClP locslly at JPL. and with proper W N access, we could do it
remotely from NASA Ames and from our homes.

12

If the enterprise s)strm needs to respond to client requesrs in
near real time. then make w e to capture this requirement
during the early desxzn stages, 35 it m i l l geatly Influence the
s) stem architechire

We were concerned i~itial]y :bar \veb services t:dou!d cause
performance problems, since using XML documents for
service requests and responses involved much data
conversions, encryptions, and decryptions. CIP was able to
achieve a data throughput rate of 100 h4B per hour behveen
a client application and the middlelvare: which \vas usually
sufficient.

Respect for the tier boundaries of an /?-tier enterprise system
requires open lines of coniniiinication for collaboration
during development. Communication of requirements must
nhvays be a two-way channel.

Developing enterprise s o h a r e is inherently difficult. Don't
make it any harder. Use C O I ? ~ Z C) ~ sense. Keep things simyle.

6. CONCLUSION

At the time this paper was written (early September 2004),
both rovers had lasted well over 300 sols, far beyond their
original nominal 90-sol missions. This \vas testament to the
excellent work and dedication of the mission managers,
scientists, and engineers at JPL and its university and
industry collaborators around the world. Fortunately, MER
software systems such as CIP have also performed well
throughout the original and the extended missions.

Service-oriented architecture, or SOA, has been making the
rounds as the latest industry buzzword. Not all of its
concepts are new. What's new is the \videspread acceptance
by industry of the standards that SOA encompasses and the
availability of much SOA infrastructure software and
components.

CIP has been a highly visible SOA success story. It
validated the architectural tenets of developing a collection
of mutually independent services that respond to client
requests and of usin9 web services for communications
between clients and the server.

However, SOX by itself does not guarantee a reliable
system. CIP was reliable bccause of the conscious decisions
that its desi-aers and developers made, as described in this
paper. Reliable software is good xchitecture plus good
software engineering.

Funding for the del-elopment of CIP came from N.4SX's
Computing, !nficmia?icn. 2nd Conmunicitictns Tecbz~!cle\- I_

(CICT) Program and the Computing: >emorking. and
Information Systems (CNIS) Project.

Besides the authors of this pdper. other CIP project members
included Roy Brirten (Q S S) , Sanjay Desai (S.2IC). hlatt
D'Ortenzio @-%SA). Glen Elliot (JPL), Robert Filman
fRIACS). K m Huhbard (SAS-4), Sandra Johan (NAS.4).
Carson i m i e (-Isam). Quit N g u ~ e n (S,AiC). iarang Patei
(SAIC), John Schreiner (N-4s-4). Jeff Shapiro (QSS). Ellas
Sinderson (CSC). and Robert \.?Ting (JPL)

This project uould not have been possible uithout the
support, assistance, and collaboration of JPL and the MER
team.

REFERENCES

[I] Jet Propulsion Laboraton. NASA fact sheet. "llars
Exploration Rover". http. ',T.WTV jpl.nasa gov neu s
fact-sheets marsO3rovers pdf.

[?] hLxS.4 press release. March 2. 2003. "Opportumty R o ~ e r
Frnds Strong Evidence 14endiaru Planum \Vas 1% et".
http marsrovers jpl nasa govmem sroom pressreleases
200303O?a html

[3] 12.4% press release. March 5 . 3004, "\.olcamc Rock m
Mars' Gus?\ Crater Hmts at Past Water",
http:, marsro\ ers jpl nasa _EO\ nen sroom pressreleases
3 003 03 0 5 a html

[A] bASA precs release, \larch 33. 3004, -Standmg Body of
L i ater Left Its Mark rn Mars Rocks".
http marsrovers jpl nasa gov newsroom pressreleasesi
30030?23a html

[5] \.%SA press release, Apnl 1. 3003. "Spmt Fmds Multi-
Laqer Hints of Past M'ater at Mars' Gusev Site".
http./'marsro\ ers.jpl.nasa gov ne\\ sroom pressreleases,
3004010 1 a html

[6] http: x x x x .nracle.com index.htm1

[1 fi] http: nx7,\ beaxom fiamen orh iSp'CXT=indeu htm
&FP= content products sen er

[133 http: ' ja\ a sun.coni products jdbc

[131 http: java.sun.com producrs jnis

[I 41 http: mirrors ccs.neu edu cgi-bin uwxhelp man-
cg?nfslogdt 1

[151 http: m o r s ccs neu edu cg-bin unidelp man-
cg3find-1

[16] Reni!d h!Sc+ -En!eqx-ise De\elopment for \Tars and
other Alien Places". keynote address presented at BEA
eWorld 7004 Conference. San Francisco. CA. May 26.
2003. LTpdated expanded. and re-presented as a talk to
the SDForum Sohxare kchtec ture and \lodeling SIG,
Palo Alto. CA. h g u s t 1 I . 2004

[1 SI Richard hlonson-Haefel, Enterprise .Jai.aBeaiis, 3'"
ea'irion> Sebastapol. CA: O'Reilly. 2001.

Ronald ,Wak wror-ked on tlie CIP development team as the
ar-chitect and lead developer of irs rniddIeu,ai-e. -4$er the
I-OIWS landed on atfar-s. he pl-ovided niission suppol-t horh ar
.Y-1S.i Ames mid at JPL. He is a Pr-ctiecr Sciemist in tlie
LiiiI.el-siq .@?!icred R~sear-ch Cer7rc.r (C:IRC). ir-hic?i is a
par-tiieis?i@ befi.i.een the C'liivei-sih, of Calgforiiia at Sarita
Ci-it: m d the X4SA dnies Reseai-c.11 Center iii :lfoJjg Field.
C-4. PI-ior to Itvikiiig at ~X-1s.4, Ron had oi'er 15 ?ears of
iiidustiy experience del.elopir7,o eiitelprise sofnGa1-e gsrems.
h-e has tatiglit graduate cozoses in coinputs- science, arid he
ic the G U ~ ? ~ O I - e;' Sooh oil miinel-ical co:?ipii?irig aizd oil

coiiipiler x,riting. l ie /ius a B.S. ii7 :he iiiatheiizaricuI
sciences and an .MS. in coiipiiei- sciencc ji-oni Stnitford
C k i1.er-s if?:.

Leslie Keely is a Coinpritei- Scientisf ai the .\L-LX-l .-fines
Research Center Slie designed and led the development cy?
the CIP client applications. and she also does resear-cii iii
the area of da f a ~isiializatioii. Leslie has a B.S. in Coinpirter-
Science and a B.S. in Botany fj-om the Lhiver-sip of
Oklahorna.

Deni1i.s Heher. worked on CIP as the lead developel- of the
data acquisition module. He is n Computer Scientist with
Science Applications International Coipi-ation (S.4IC) at
the :WSA .-Lines Reseaid Ceiitei.. He Iias CI B..4. in
Computer and Information Sciences fiorn the Universic- of
Calforiiia ri i Surtta Cric and un M S . in Conipzrtet-
Engineering-fj-om Santa Clam L'niversi~.

Louise Chan is a Cornptrter Scientisi witli Science
Apptic~itions Inter-national Corporation (SAIC) ut the N4SA
Ames Reseurch Center-. She designed and led the
iiplcinentation of the data repositoiy tier. She also does
r-esearch in the areas of data modeling and management
circliitecture. She holc(s u B.S. degree in Computer Science
,fi-oiii the Lhivenrip oj'!\hi?dcind

14

